VERTICAL RECTANGULAR FINS ARRAY DESIGN EXPERIMENTAL AND THEORITICAL COMPARISONS
Journal Article
  • Experimental and theoretical comparisons have been performed for natural convection heat transfer over rectangular fins array at different fin parameters. This investigation includes the effect of fin length, fin spacing, fin height, orientation angle, and temperature difference between the heat sink and the surrounding environment. To understand the general flow patterns dominating flows from the heat sink, the three dimensionless elliptic governing equations were solved using finite volume computational fluid dynamics (CFD) code, and the experimental work was carried for the system at different orientations. A new empirical correlation (modified of McAdam's correlation) was derived to correlate the mean Nusselt number as a function of the Rayleigh number. The average heat transfer coefficient has a maximum value at an orientation angle equal to zero degrees, and it decreases with an increasing orientation angle. The heat transfer rate per unit base area increases as fin spacing increase until it reaches a maximum value (6.5 mm), then it decreases with a further increase of fin spacing. The results of these investigations between the experimental and theoretical study were showing good agreements with similar international works.

Hmza Ashur Milad Mohamed, (09-2021), USA: IJSRED, 4 (5), 937-953

خفض الركام الخشن في الخمطة الخرسانية وتأثيره عمى مقاومة الضغط لمخرسانة
مقال في مجلة علمية

Abstract:

This study includes the effect of reducing coarse aggregate in concrete mixture on its softening and hardening properties, where the concrete mixtures were prepared with varying proportions of coarse aggregate and replaced with fine aggregate (30%, 40%, 50

Hardened concrete was studied by means of a compression resistance test. The average compressive strength of three samples taken , and that is after the concrete has been treated by immersing in water for a period of 7 days, 14 days, and 28 days.

The operational degree of softened concrete was determined for all the above mentioned ratios, where six concrete mixtures were prepared, with a total of 60 cubes, at a ratio of mixing 1:2:4 cement and aggregate (fine, coarse) and by adding water to cement in a ratio of 0.5, the results indicated that the concrete of (40%) coarse aggregate was most suitable for use in desert areas.

Key Words: Coarse aggregate, Fine aggregate, Compressive strength.

خالد محمد عمرو أمحمد، (07-2021)، المعهد العالي للعلوم والتقنية غريان: مجلة غريان للتقنية، 7 (7)، 81-88

OPTIMUM DESIGN OF VERTICAL RECTANGULAR FIN ARRAY
Journal Article

Experimental and numerical investigations have been performed to study the natural convection heat transfer from a vertical rectangular fin arrays at different orientation angles.An experimental setup was constructed and calibrated to test different fin configurations. It basically consists of base plate, an array of parallel longitudinal fins, heating unit and layers of thermal insulation. Fin length (L) and fin thickness (t) were kept fixed at 187 and 6.5 mm respectively, while fin spacing (S) was varied from 3 to 16 mm and fin height (H) was varied from 15 to 45 mm. The orientation angle (β) was changed from 0° to 60°, and temperature difference between fin and surrounding (∆T) from 30 to 95 o C.Base-to-ambient temperature difference was also varied through a calibrated wattmeter ranging from 10 to 180W. To understand the general flow patterns dominating flows from the heat sink, the three-dimensionless elliptic governing equations were solved using finite volume computational fluid dynamics (CFD) code. A comparative study between the experimental and numerical results was performed to verify the numerical code. It was found for the configuration tested that the heat transfer rate per unit base area increases with the increase in the fin spacing and reaches a maximum value then decreases with farther increase in the fin spacing. The maximum heat dissipation occurs at optimal spacing S opt =7 mm. Empirical correlations between Nussult number, Rayleigh number, fin spacing, fin height, orientation angle, temperature difference between the fin and surroundings were derived. Finally the present work general empirical formula is given in the form =. .. .. Where , 15 mm ≤ H ≤ 45 mm, 3mm ≤ S ≤ 16 mm, °0 ≤ β ≤°60, t = 6.5 mm, L = 187 mm.

Hmza Ashur Milad Mohamed, (07-2021), USA: IJSRED, 4 (4), 1110-1133

Roadmap for Utilizing Machine Learning in Building Energy Systems Applications: Case Study of Predicting Chiller Running Capacity for School Buildings Using Stacking Learning
Journal Article

Cooling accounts for 12-38% of total energy consumption in schools in the US, depending on the region. In this study, stacking learning is utilized to predict chiller running capacity for four school buildings (regression) and to predict the chiller status for four another schools (classification) using a collection of interval chiller data and building demand. Singular and multiple measurement periods within one or more seasons are considered. A generalized methodology for modeling building energy systems is posited that informs selection of features, data balancing to attain the best model possible, ensemble-based stacked learning in order to prevent over-fitting, and final model development based upon the results from the stacked learning. The results show that ensemble-based stacked learning improves the model performance substantially; providing the most accurate results for both regression and classification. for both classification and regression. For, classification, the balanced accuracy is 99.79% while Kappa is 99.39%. For regression, the R-squared value, the mean absolute error (MAE) error, and the root mean squared error (RMSE) are 1.78 kW, 2.77 kW, and 0.983 respectively.

Rodwan Elhashmi, Kevin P. Hallinan, Abdulrahman Alanezi, (03-2021), journal of Energy & Technology (JET): DOI: 10.5281/zenodo.4560626, 1 (1), 35-45

Machine Learning Enabled Large-Scale Estimation of Residential Wall Thermal Resistance from Exterior Thermal Imaging
Journal Article

Traditional building energy audits are both expensive, in the range of USD $1.29/m 2-$5.37/m 2, and inconsistent in their prediction of potential energy savings. Automation to reduce costs of evaluating the energy effectiveness of buildings is strongly needed. A key element of such automation is a means to estimate the building envelope energy effectiveness. We present a method that addresses this need by using infrared thermography to characterize building wall envelope effectiveness. To date, thermal imaging approaches for estimating wall R-Values, based upon thermal-physical models of walls, require additional manual measurements and analysis which prohibit low-cost, large-scale implementation. To overcome this implementation challenge, a machine learning approach is used to predict wall R-Values for a set of residences with known thermal resistance by utilizing the measured wall imaging temperature, prior weather conditions, historical energy consumption data, and available building geometrical data. The developed model is shown to predict wall R-Values with a maximum test-set root mean squared error of 7% using as few as nine training houses. This result has significant implications for low-cost large-scale envelope energy effectiveness characterization.

Salahaldin Alshatshati, Kevin P Hallinan, Rodwan Elhashmi, Kefan Huang, (03-2021), journal of Energy & Technology (JET): Journal of Energy & Technology (JET), 1 (1), 46-53

Using smart-wifi thermostat data to improve prediction of residential energy consumption and estimation of savings
Journal Article

Energy savings based upon use of smart WiFi thermostats ranging from 10 to 15% have been documented, as new features such as geofencing have been added. Here, a new benefit of smart WiFi thermostats is identified and investigated; namely, as a tool to improve the estimation accuracy of residential energy consumption and, as a result, estimation of energy savings from energy system upgrades, when only monthly energy consumption is metered. This is made possible from the higher sampling frequency of smart WiFi thermostats. In this study, collected smart WiFi data are combined with outdoor temperature data and known residential geometrical and energy characteristics. Most importantly, unique power spectra are developed for over 100 individual residences from the measured thermostat indoor temperature in each and used as a predictor in the training of a singular machine learning models to predict consumption in any residence. The best model yielded a percentage mean absolute error (MAE) for monthly gas consumption ±8.6%. Applied to two residences to which attic insulation was added, the resolvable energy savings percentage is shown to be approximately 5% for any residence, representing an improvement in the ASHRAE recommended approach for estimating savings from whole-building energy consumption that is deemed incapable at best of resolving savings less than 10% of total consumption. The approach posited thus offers value to utility-wide energy savings measurement and verification.

Abdulrahman Alanezi, Kevin P. Hallinan, Rodwan Elhashmi, (01-2021), Energies: MDPI, 14 (1),

NATIRT – Model of the Loss of Flow Transient for Tajoura Research Reactor with LEU Fuel
Journal Article

Design parameters are presented for Tajoura reactor core utilizing the new fuel assemblies with low enriched uranium (LEU, using IRT-4M fuel assemblies) in the steady state safety operational parameters and Loss of Flow transient mathematical models (NATIRT - computer program. The calculated results of the model are presented in the cases of forced convection steady state, transient during emergency tank filling and natural convection after emergency tank filling modes at different reactor core thermal power level. The results of NATIRT for all cases of flow were in good agreement with the PARET and PLTEMP computer programs.

Hmza Ashur Milad Mohamed, (01-2021), USA: IJSRED, 4 (5), 1-9

The Impact of Design Space on the Accuracy of Predictive Models in Predicting Chiller Demand Using Short-Term Data
Journal Article

Predicting cooling load is essential for many applications such as diagnosing the health of existing chillers, providing better control functionality, and minimizing peak loads. In this study, short-term chiller and total building demand are acquired for five different commercial buildings in the Midwest USA. Four different machine learning models are then used to predict the chiller demand using the total building demand, outdoor weather data, and day/time information. Two data collection scenarios are considered. The first relies upon use of multiple weeks of data collection that includes very warm periods and season transitional periods where the outdoor temperature ranged from very warm to cool conditions in order to envelope all cooling season weather conditions. The second scenario employs use of contiguous data for a several weeks during only the warmest period of the year. The results show that using two or more separate time periods to envelope most of the weather data yields a much more accurate model in comparison to use of data for only one time period. These research findings have importance to energy service companies which often do short term audits (measurements) in order to estimate potential savings from chiller system upgrades (controls or otherwise).

Rodwan Elhashmi, Kevin P Hallinan, Salahaldin Alshatshati, (01-2021), Journal of Energy & Technology (JET): Journal of Energy & Technology (JET), 1 (1), 24-34

دراسة تأتير بودرة حجر البازلت على خواص الخرسانة
مقال في مؤتمر علمي

الـــــــــــــــــــــــــملخص

􀊙 أح 􀊧 وف أن م 􀊛 ع􀊺 ال 􀊧 اء، وم 􀊻􀊰 وال 􀊙􀊽􀊽􀊷􀊱 سة ال 􀊙􀊻 ال ه 􀊳 ة في م 􀊺 ه􀊺 م ال 􀊨 العل 􀊧 ة م 􀥽 سان 􀊛􀊵 الإضافات ال 􀊛􀊰􀊱 تع

سعى 􀊙 ل عام ، ولق 􀈞􀊷􀇼 ة 􀥽 سان 􀊛􀊵 آت ال 􀊷􀊻􀊺 في لل 􀥽􀊣􀊨 ال 􀊛􀊺 ة للع 􀥽􀊰􀊶􀊻 ادة ال 􀈄􀊜 ت الإضافات ال 􀊜ا 􀊽􀊺 م

ة، مع 􀥽􀉻􀥽􀊰􀊢 ارد ال 􀊨􀊺 لى لل 􀊲 ار م 􀊺􀊲􀊱 ق إس 􀊛􀊡 ل إلى 􀊨 ص􀊨 ول لل 􀊙 ال 􀊦􀊤 في مع 􀊙􀊽􀊽􀊷􀊱 اع ال 􀊢 ن في ق 􀊨􀊽 اص 􀊸􀊱 الإخ

فادة 􀊱 ورة الاس 􀊛 ار إلى ض 􀊤 ه الأن 􀥽 ج􀊨 ا ت 􀊻 حاول 􀊘􀊴􀥼 ا ال 􀊚 الات، و في ه 􀊳􀊺 ى ال 􀊱 ي الهائل في ش 􀊻 ق􀊱 ر ال 􀊨􀊢􀊱 ال

اء 􀊨 مها س 􀊙 ي تق 􀊱 ة ال 􀊙 ي􀊙 ا الع 􀇽􀊜ا 􀊺 ات وال 􀥽 ان 􀈞 للإم 􀊛ا 􀊤 ل، ن 􀊲 ل الأم 􀈞􀊷 ال 􀇼 ارها 􀊺􀊲􀊱 اولة إس 􀊴 ة وم 􀥽􀉻􀥽􀊰􀊢 ارد ال 􀊨􀊺 ال 􀊧 م

ة. 􀥽􀊯􀊽􀊰 ة أو ال 􀇽 اد 􀊸􀊱 الإق

درة 􀊨 ة ب 􀊯􀊽 جه على ه 􀊛 ه لإخ ا 􀊻􀊴􀊡 􀊦 ت 􀈑􀊚 ال 􀊗 ازل 􀥼 ال 􀊛􀊳 ام إضافة مادة ح 􀊙􀊵􀊱 إس 􀈐􀊙 اول م 􀊻􀊱 ا رسة ت 􀊙 ه ال 􀊚 ه

على 􀊙 اع 􀊶 ادر لا ت 􀊸􀊺 ه ال 􀊚 ل ه 􀊲􀊺 ام ل 􀊙􀊵􀊱 إن إعادة الإس 􀊘􀊽 ل ، ح 􀊽 قل 􀇼 أو أقل 􀊗􀊻􀊺 مة الاس 􀊨 رجة نع 􀊙 ة ب 􀊺 ناع

ة 􀥽 اد الأول 􀊨􀊺 ة ال 􀥼􀊶 ال ن 􀊙􀊰􀊱 ها في إس 􀊻 فادة م 􀊱 الإس 􀈐􀊙 ا في م 􀊹􀇽 ، و أ 􀊖􀊶􀊴 ة ف 􀥽􀉻􀥽􀊰􀊢 ارد ال 􀊨􀊺 ال 􀈍 حفا

د رة إلى 􀊨 ل ب 􀈞 ن على ش 􀊨􀊴􀊢􀊺 ال 􀊗 ازل 􀥼 ل ال 􀊙􀊰􀊱 اس 􀈑 ة. أ 􀇽 ة العاد 􀇽􀊙 رتلان 􀊨􀊰 ة ال 􀥽􀊱􀊻􀊺 سانة الإس 􀊛􀊵 مة في ال 􀊙􀊵􀊱􀊶􀊺 ال

􀊦􀥽􀊽 تق 􀊦 ت 􀊘􀊽 ون إضافات، ح 􀊙 ة ب 􀥽􀉻 ج􀊛􀊺 ة ال 􀊢 ل􀊵 ال 􀇼 ائج 􀊱􀊻 ومقارنة ال 􀊗􀊻􀊺 ة الاس 􀥼􀊶 ن 􀊧 ه 15 % م 􀊱􀊰􀊶 ل ن 􀊸􀇽 ما

ة 􀥽 ل قابل 􀊺􀊷 ي ت 􀊱 ة وال 􀥽 ل􀊺 ع􀊺 ا ا رت ال 􀥼􀊱 الاخ 􀊧 د م 􀊙 ء ع 􀊛 إج ا 􀇼 ة 􀇽 سانة العاد 􀊛􀊵 ال 􀈌􀥽 خل 􀊟 ائ 􀊸 ائل على خ 􀊙􀊰 ه ال 􀊚 ه

رة 􀊛ا 􀊴 درجة ال 􀊛􀊽 ار) وتأث 􀊢􀊷 (الان 􀊛 اش 􀥼􀊺 ال 􀊛􀊽 غ 􀊙􀊷 ة ال 􀊨 ، ق 􀈌 غ􀊹 ة ال 􀊨 اص، ق 􀊸􀊱 ة الام 􀥼􀊶 ل، ن 􀊽 غ􀊷􀊱 ال

اح 􀊳􀊻 امها ب 􀊙􀊵􀊱 ة إعادة اس 􀥽 ان 􀈞 م􀈂 ات و 􀇽 فا 􀊻 ال 􀊧 ع م 􀊨􀊻 ا ال 􀊚 ه 􀊧 فادة م 􀊱 الاس 􀈐􀊙 ة و م 􀇽􀊙􀊳 ائج م 􀊱􀊻 ل ل 􀊨 ص􀊨 ولل

. 􀊗􀊻􀊺 الاس 􀇼 ها مقارنة 􀊱 لف 􀘔 لقلة ت 􀊥 ة و ذل 􀥽 سان 􀊛􀊵 ات ال 􀊢 ل􀊵 في ال 􀊗􀊻􀊺 ئي للإس 􀊜 يل ج 􀊙􀊰 ك

رجة 􀊙 ضها ل 􀊛 تع 􀊙 ع􀈃 ل و 􀊰 ق 􀈌 غ􀊹 ى 15 % ا زدت مقاومة ال 􀊱 ة الإحلال ح 􀥼􀊶 ا ا زدت ن 􀊺 ل􀘗 أنه 􀊘􀊴􀥼 ال 􀊜 ج􀊨 و ي

اء. 􀊺 اص لل 􀊸􀊱 ة إم 􀥼􀊶 وأقل ن 􀊛 اش 􀥼 م 􀊛􀊽 غ 􀊙 أعلى مقاومة ش 􀊥 ل􀊚􀘗 ة، و 􀈄􀊨􀊯 ل 100 درجة م 􀊸 رة ت 􀊛

خالد محمد عمرو أمحمد، (12-2020)، جامعة النجم الساطع - المؤتمر الدولي السادس - حالة الخريطة: جامعة النجم الساطع، 1-10

دراسة تأتير ألیا ف البو لي برو بلین و الأ لیا ف الزجاجية على الخو ا ص اللدنة و الصلدة للخرسانة داتية الدمك
مقال في مؤتمر علمي

الملخص :

( Self-Compacting Concret)e م ن الم تع ارف ع لیھ في مج ال تقنیة الخرس انة أن الخرس انة ذ اتیة الدمك

ال مح تو یة ع لى الأ لیاف ھي أ حد ى تط بیقا ت المش ار یع ال حدیثة المدنیة المخ تلفة و الم تنوع ة .

ولاھدف ا لأس اسي في ھ ذ ا البحث ھو إ ض افة بعض الم ودا المض افة لتحس ین بعض خ وا ص الخرس انة ذ اتیة الدمك باع تبارھ ا

تستعمل بك ثر ة في تنفیذ المش ار یع ، وخ ا ص ة الم باني الح دیثة التي تكون بھ ا ك ثافة تسلیح ع الیة و تكون علایة ا لار تفاع ،

وجیب ا لإش ار ة إل ى أن ھ نا ك ع دة أنو ا ع من ا لأ لیا ف م ثل ا لأ لیا ف الح دیدیة و ا لأ لیا ف الزج اج یة و ألیا ف الكر بون .

، % 0.2 5 ، % ف يھ ذ ا البحث ثم در اس ة إ ض افة ألیا ف البو ل ي برو بلین و ا لأ لیا ف الزج اج یة إل ى الخرس انة و بنسب 0

1 % 0.7 ، % من حج م الخرس انة ح ی ث أجر ی ت ع دة اخ تبار ا ت ع ل ى الخرس انة ال طر یة و ال ص لدة ، م نھ ا اخ تبار ،5 % 0.50

حسا ب م قاومة ال ض غط و الش د .

و تبین النتائج بأنھ ع ند إ ض افة م ادة ا لأ لیا ف تبد أ م قاومة ال ض غط في النقص ان ح ی ث ك ان ت أع ل ى م قاومة ض غط في ح دود 51

3 نوی تن / مم 2 عند نس بة ألیا ف 1.0 % ، بینم ا م قاومة نوی تن / مم 2 عند نس بة ألیا ف 0 % ، و أقل م قاومة ك ان ت ع ند3

ال شد تتناسب طردیا مع الأ لیاف ح یث ك انت أقل م قاومة شد بدون ألیاف ع ند 3.16 نوی تن / مم 2 بی منا أع لى قیمة ع ند 3.72

. نوی تن /مم

خالد محمد عمرو أمحمد، (12-2020)، جامعة المرقب: Third Conference for Engineering Sciences and Technology، 1-9

© All rights reserved to University of Gharyan