Machine Learning Enabled Large-Scale Estimation of Residential Wall Thermal Resistance from Exterior Thermal Imaging
Journal ArticleTraditional building energy audits are both expensive, in the range of USD $1.29/m 2-$5.37/m 2, and inconsistent in their prediction of potential energy savings. Automation to reduce costs of evaluating the energy effectiveness of buildings is strongly needed. A key element of such automation is a means to estimate the building envelope energy effectiveness. We present a method that addresses this need by using infrared thermography to characterize building wall envelope effectiveness. To date, thermal imaging approaches for estimating wall R-Values, based upon thermal-physical models of walls, require additional manual measurements and analysis which prohibit low-cost, large-scale implementation. To overcome this implementation challenge, a machine learning approach is used to predict wall R-Values for a set of residences with known thermal resistance by utilizing the measured wall imaging temperature, prior weather conditions, historical energy consumption data, and available building geometrical data. The developed model is shown to predict wall R-Values with a maximum test-set root mean squared error of 7% using as few as nine training houses. This result has significant implications for low-cost large-scale envelope energy effectiveness characterization.
Salahaldin Alshatshati, Kevin P Hallinan, Rodwan Elhashmi, Kefan Huang, (03-2021), journal of Energy & Technology (JET): Journal of Energy & Technology (JET), 1 (1), 46-53
Roadmap for Utilizing Machine Learning in Building Energy Systems Applications: Case Study of Predicting Chiller Running Capacity for School Buildings Using Stacking Learning
Journal ArticleCooling accounts for 12-38% of total energy consumption in schools in the US, depending on the region. In this study, stacking learning is utilized to predict chiller running capacity for four school buildings (regression) and to predict the chiller status for four another schools (classification) using a collection of interval chiller data and building demand. Singular and multiple measurement periods within one or more seasons are considered. A generalized methodology for modeling building energy systems is posited that informs selection of features, data balancing to attain the best model possible, ensemble-based stacked learning in order to prevent over-fitting, and final model development based upon the results from the stacked learning. The results show that ensemble-based stacked learning improves the model performance substantially; providing the most accurate results for both regression and classification. for both classification and regression. For, classification, the balanced accuracy is 99.79% while Kappa is 99.39%. For regression, the R-squared value, the mean absolute error (MAE) error, and the root mean squared error (RMSE) are 1.78 kW, 2.77 kW, and 0.983 respectively.
Rodwan Elhashmi, Kevin P. Hallinan, Abdulrahman Alanezi, (03-2021), journal of Energy & Technology (JET): DOI: 10.5281/zenodo.4560626, 1 (1), 35-45
NATIRT – Model of the Loss of Flow Transient for Tajoura Research Reactor with LEU Fuel
Journal ArticleDesign parameters are presented for Tajoura reactor core utilizing the new fuel assemblies with low enriched uranium (LEU, using IRT-4M fuel assemblies) in the steady state safety operational parameters and Loss of Flow transient mathematical models (NATIRT - computer program. The calculated results of the model are presented in the cases of forced convection steady state, transient during emergency tank filling and natural convection after emergency tank filling modes at different reactor core thermal power level. The results of NATIRT for all cases of flow were in good agreement with the PARET and PLTEMP computer programs.
Hmza Ashur Milad Mohamed, (01-2021), USA: IJSRED, 4 (5), 1-9
The Impact of Design Space on the Accuracy of Predictive Models in Predicting Chiller Demand Using Short-Term Data
Journal ArticlePredicting cooling load is essential for many applications such as diagnosing the health of existing chillers, providing better control functionality, and minimizing peak loads. In this study, short-term chiller and total building demand are acquired for five different commercial buildings in the Midwest USA. Four different machine learning models are then used to predict the chiller demand using the total building demand, outdoor weather data, and day/time information. Two data collection scenarios are considered. The first relies upon use of multiple weeks of data collection that includes very warm periods and season transitional periods where the outdoor temperature ranged from very warm to cool conditions in order to envelope all cooling season weather conditions. The second scenario employs use of contiguous data for a several weeks during only the warmest period of the year. The results show that using two or more separate time periods to envelope most of the weather data yields a much more accurate model in comparison to use of data for only one time period. These research findings have importance to energy service companies which often do short term audits (measurements) in order to estimate potential savings from chiller system upgrades (controls or otherwise).
Rodwan Elhashmi, Kevin P Hallinan, Salahaldin Alshatshati, (01-2021), Journal of Energy & Technology (JET): Journal of Energy & Technology (JET), 1 (1), 24-34
Using smart-wifi thermostat data to improve prediction of residential energy consumption and estimation of savings
Journal ArticleEnergy savings based upon use of smart WiFi thermostats ranging from 10 to 15% have been documented, as new features such as geofencing have been added. Here, a new benefit of smart WiFi thermostats is identified and investigated; namely, as a tool to improve the estimation accuracy of residential energy consumption and, as a result, estimation of energy savings from energy system upgrades, when only monthly energy consumption is metered. This is made possible from the higher sampling frequency of smart WiFi thermostats. In this study, collected smart WiFi data are combined with outdoor temperature data and known residential geometrical and energy characteristics. Most importantly, unique power spectra are developed for over 100 individual residences from the measured thermostat indoor temperature in each and used as a predictor in the training of a singular machine learning models to predict consumption in any residence. The best model yielded a percentage mean absolute error (MAE) for monthly gas consumption ±8.6%. Applied to two residences to which attic insulation was added, the resolvable energy savings percentage is shown to be approximately 5% for any residence, representing an improvement in the ASHRAE recommended approach for estimating savings from whole-building energy consumption that is deemed incapable at best of resolving savings less than 10% of total consumption. The approach posited thus offers value to utility-wide energy savings measurement and verification.
Abdulrahman Alanezi, Kevin P. Hallinan, Rodwan Elhashmi, (01-2021), Energies: MDPI, 14 (1),
دراسة تأتير ألیا ف البو لي برو بلین و الأ لیا ف الزجاجية على الخو ا ص اللدنة و الصلدة للخرسانة داتية الدمك
مقال في مؤتمر علميالملخص :
( Self-Compacting Concret)e م ن الم تع ارف ع لیھ في مج ال تقنیة الخرس انة أن الخرس انة ذ اتیة الدمك
ال مح تو یة ع لى الأ لیاف ھي أ حد ى تط بیقا ت المش ار یع ال حدیثة المدنیة المخ تلفة و الم تنوع ة .
ولاھدف ا لأس اسي في ھ ذ ا البحث ھو إ ض افة بعض الم ودا المض افة لتحس ین بعض خ وا ص الخرس انة ذ اتیة الدمك باع تبارھ ا
تستعمل بك ثر ة في تنفیذ المش ار یع ، وخ ا ص ة الم باني الح دیثة التي تكون بھ ا ك ثافة تسلیح ع الیة و تكون علایة ا لار تفاع ،
وجیب ا لإش ار ة إل ى أن ھ نا ك ع دة أنو ا ع من ا لأ لیا ف م ثل ا لأ لیا ف الح دیدیة و ا لأ لیا ف الزج اج یة و ألیا ف الكر بون .
، % 0.2 5 ، % ف يھ ذ ا البحث ثم در اس ة إ ض افة ألیا ف البو ل ي برو بلین و ا لأ لیا ف الزج اج یة إل ى الخرس انة و بنسب 0
1 % 0.7 ، % من حج م الخرس انة ح ی ث أجر ی ت ع دة اخ تبار ا ت ع ل ى الخرس انة ال طر یة و ال ص لدة ، م نھ ا اخ تبار ،5 % 0.50
حسا ب م قاومة ال ض غط و الش د .
و تبین النتائج بأنھ ع ند إ ض افة م ادة ا لأ لیا ف تبد أ م قاومة ال ض غط في النقص ان ح ی ث ك ان ت أع ل ى م قاومة ض غط في ح دود 51
3 نوی تن / مم 2 عند نس بة ألیا ف 1.0 % ، بینم ا م قاومة نوی تن / مم 2 عند نس بة ألیا ف 0 % ، و أقل م قاومة ك ان ت ع ند3
ال شد تتناسب طردیا مع الأ لیاف ح یث ك انت أقل م قاومة شد بدون ألیاف ع ند 3.16 نوی تن / مم 2 بی منا أع لى قیمة ع ند 3.72
. نوی تن /مم
خالد محمد عمرو أمحمد، (12-2020)، جامعة المرقب: Third Conference for Engineering Sciences and Technology، 1-9
دراسة تأتير بودرة حجر البازلت على خواص الخرسانة
مقال في مؤتمر علميتعتبر الإضافات الخرسانية من العلوم المهمة في مجال هندسة التشييد والبناء، ومن المعروف أن من أحد مميزات الإضافات الزيادة النسبية للعمر الوظيفي للمنشآت الخرسانية بشكل عام ، ولقد سعى الإختصاصيون في قطاع التشييد في معظم الدول للوصول إلى طرق إستثمار مثلى للموارد الطبيعية، مع التطور التقني الهائل في شتى المجالات، و في هذا البحث حاولنا توجيه الأنظار إلى ضرورة الاستفادة من الموارد الطبيعية ومحاولة إستثمارها بالشكل الأمثل، نظرا للإمكانيات والمزايا العديدة التي تقدمها سواء الإقتصادية أو البيئية.
هذه الدراسة تتناول مدى إستخدام إضافة مادة حجر البازلت الذي تم طحنه لإخراجه على هيئة بودرة ناعمة بدرجة نعومة الاسمنت أو أقل بقليل ، حيث إن إعادة الإستخدام لمثل هذه المصادر لا تساعد على حفاظ الموارد الطبيعية فحسب، و أيضا في مدى الإستفادة منها في إستبدال نسبة المواد الأولية المستخدمة في الخرسانة الإسمنتية البورتلاندية العادية. أي استبدل البازلت المطحون على شكل بودرة إلى ما يصل نسبته 15% من نسبة الاسمنت ومقارنة النتائج بالخلطة المرجعية بدون إضافات، حيث تم تقييم هذه البدائل على خصائص خليط الخرسانة العادية بإجراء عدد من الاختبارات المعملية والتي تشمل قابلية التشغيل، نسبة الامتصاص، قوة الضغط ، قوة الشد غير المباشر (الانشطار) وتأثير درجة الحرارة وللوصول لنتائج مجدية و مدى الاستفادة من هذا النوع من النفايات وإمكانية إعادة استخدامها بنجاح كبديل جزئي للإسمنت في الخلطات الخرسانية و ذلك لقلة تكلفتها مقارنة بالاسمنت .
و يوجز البحث أنه كلما زادت نسبة الإحلال حتى 15% زادت مقاومة الضغط قبل وبعد تعرضها لدرجة حرارة تصل 100 درجة مئوية، وكذلك أعلى مقاومة شد غير مباشر وأقل نسبة إمتصاص للماء.
الكلمـــات المفتاحية : الإضافات الخرسانية, بودرة حجر البازلت , الخرسانة العادية , مقاومة الضغط .
خالد محمد عمرو أمحمد، (12-2020)، جامعة النجم الساطع - المؤتمر الدولي السادس - حالة الخريطة: جامعة النجم الساطع، 1-10
Mie MODEL OF RADIATION HEAT TRANSFERIN ISOTHERMAL SPHERICAL MEDIUM
Journal ArticleIn certain extremely low probability, severe accident scenarios which have been postulated for liquid metal cooled fast reactors,large bubble cavities containing fuel vapor and fission products transit a layer of coolant and release this material to the cover gas thereby presenting a contribution to an accident-specific source term [5].Mie model in radiation heat transfer has been investigated to analysis and interpret the experiments that conducted during 1980's for oxide UO 2 fueled reactors in Fuel Aerosol Simulant Test (FAST) facility at Oak Ridge National Laboratory (ORNL).These analyses are applied to estimate the bubble collapse of Liquid Metal reactors (LMR's) during a hypothetical core disruptive accident (HCDA).InMie scattering model the particle size was 0.07 µm [6]. The scattering coefficient of UO 2 particles (σ = 1.24 m-1), was calculated by using Mie theory,at the same number of stable nuclei's N (2.9 E15 nuclei/m 3) that resulted from theabsorbed coefficientk = 0.082 m-1 [7].P 1 approximation method was used to solve the radiative heat transfer equation (RTE) in spherical coordinates of participating medium confined between the two concentric spheres.The surfaces of the spheres are assumed to be gray, diffusely emitting and diffusely reflecting boundaries, and an isothermal boundary conditions were assumed at these surfaces.Marsak's boundary condition was to computed, the net radiative heat flux q(τ), and the incident radiation G(τ), to analyze and interpret the CVD experiments data that were conducted in the FAST facility at ORNL [8] and Fast Flux Test Facility reactor (FFTF) in Argonne National Laboratory ANL.The conclude that extracted from this study is greater margin of safety when the bubble rising time is greater than the bubble collapse time since the bubble collapses (UO 2 condenses) before it can reach the top of the vessel therefore there is less chance of release of aerosol as in Oak Ridge National Laboratory (ORNL) FAST experiments and Argonne National Laboratory (FFTF) reactor.
Hmza Ashur Milad Mohamed, (09-2020), USA: IJSRED, 3 (5), 402-420
Hybrid CHP/Geothermal Borehole System for Multi-Family Building in Heating Dominated Climates
Journal ArticleAbstract: A conventional ground-coupled heat pump (GCHP) can be used to supplement heat
rejection or extraction, creating a hybrid system that is cost-eective for certainly unbalanced climes.
This research explores the possibility for a hybrid GCHP to use excess heat from a combined heat
power (CHP) unit of natural gas in a heating-dominated environment for smart cities. A design for
a multi-family residential building is considered, with a CHP sized to meet the average electrical
load of the building. The constant electric output of the CHP is used directly, stored for later use in a
battery, or sold back to the grid. Part of the thermal output provides the building with hot water,
and the rest is channeled into the GCHP borehole array to support the building’s large heating needs.
Consumption and weather data are used to predict hourly loads over a year for a specific multi-family
residence. Simulations of the energies exchanged between system components are performed, and a
cost model is minimized over CHP size, battery storage capacity, number of boreholes, and depth of
the borehole. Results indicate a greater cost advantage for the design in a severely heated (Canada)
climate than in a moderately imbalanced (Ohio) climate.
Saeed Alqaed, Jawed Mustafa, Kevin P. Hallinan, Rodwan Elhashmi, (09-2020), Sustainability: MDPI, 12 (18),
Rayleigh Model of Radiation Heat Transfer in Spherical Medium
Journal ArticleIn certain extremely low probability, severe accident scenarios which have been postulated for liquid metal cooled fast reactors, large bubble cavities containing fuel vapor and fission products transit a layer of coolant and release this material to the cover gas thereby presenting a contribution to an accident-specific source term [5]. Rayleigh model in radiation heat transfer has been investigated to analysis and interpret the experiments that conducted during 1980's for oxide UO 2 fueled reactors in Fuel Aerosol Simulant Test (FAST) facility at Oak Ridge National Laboratory (ORNL).These analyses are applied to estimate the bubble collapse of Liquid Metal reactors (LMR's) during a hypothetical core disruptive accident (HCDA). In Rayleigh non-scattering model the particle size was 0.01 µm [6],and according to Mie theory principle, the absorption coefficient for small particle-size distribution was estimated (k = 10 m-1 was used) from reference [7] at complex refractive index of UO 2 at λ = 600 µm and x = 0.0785.A MATLAB code was used to solvethe radiative heat equation (RTE) in spherical coordinates. The mixture is in local thermodynamic equilibrium inside the bubble which has a black body surface boundary.The mixture in the cavity contains three components: the non-condensable gas Xenon, Uranium dioxide vapor, and fog.To simulate fuel bubble's geometry as realistically as possible, according to experimental observation, the energy equation in a spherical coordinate system has been solved with the radiative flux heat transfer equation (RTE) to obtain the effect of fuel bubble's geometry on the transient radiative heat flux and to predict the transient temperature distribution in the participating medium during a hypothetical core disruptive accident (HCDA) for liquid metal fast breeding reactor (LMFBR) for FAST. The transient temperature distribution in fog region was utilized to predict the amount of condensable UO 2 vapor = − ! " ! #. The conclusion that can be drawn from the present study, is that the Fuel Aerosol Simulant Test (FAST) facility at Oak Ridge National Laboratory has a larger margin of safety since the bubble rising time is greater than the bubble collapse time.
Hmza Ashur Milad Mohamed, (09-2020), USA: IJSRED, 3 (5), 421-437